Mechanism of nanostructured fluorapatite formation from CaO, CaF₂ and P₂O₅ precursors by mechanochemical synthesis

Raheleh Nikonam Mofrada*, Sayed Khatiboleslam Sadrnezhaadb and Jalil Vahdati Khakić

*Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, 1455 De Maisonneuve Blvd. W., Montreal, Quebec, Canada H3G 1M8
bDepartment of Materials Science and Engineering, Sharif University of Technology, PO Box 11365-9466, Tehran, Iran
cDepartment of Material Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, PO Box 91775-1111, Mashhad, Iran
*E-mail: rahele_nikonam@ymail.com

ABSTRACT

We determined the mechanism of mechanochemical synthesis of fluorapatite from CaO, CaF₂ and P₂O₅ by characterisation of the intermediate compounds. We used atomic absorption spectroscopy, X-ray diffraction, field emission scanning electron microscopy, FTIR spectroscopy and transmission electron microscopy to find the transitional compounds. Investigation of the binary and ternary powder mixtures revealed the appearance of H₃PO₄, Ca(OH)₂, Ca₂P₂O₇ and CaCO₃ as the intermediate compounds. At early stages of the milling, conversions of P₂O₅ to H₃PO₄ and CaO to Ca(OH)₂ occurred in the wet atmosphere. Later, a combination of Ca(OH)₂ and H₃PO₄ formed Ca₂P₂O₇ while the unreacted CaO was converted to CaCO₃ by CO₂ of the ambient atmosphere. Spherical crystalline Ca₁₀(PO₄)₆F₂ particles formed after 48 hours of milling due to the reaction between Ca₂P₂O₇, CaCO₃ and CaF₂.

KEYWORDS: mechanochemical process, nanostructured fluorapatite, reaction mechanism, intermediate compounds

1. INTRODUCTION

Statistics show that around 8.9 million fractures happen annually due to osteoporosis which targets about one in three women and one in five men over age 50 [1]. Designing new calcium phosphate (CP)-based implants and substitutes for regeneration and repair of bone and teeth defects has therefore grown considerably in recent years [2–4]. The well-known biocompatible CP, fluorapatite (FA) [Ca₁₀(PO₄)₆F₂] has found wide applications for clinical use [5]. Studies have shown that FA has better thermal and chemical stability in simulated body fluid than hydroxyapatite [6–8].

The presence of fluorine in the culture medium results in dental and skeletal development and prevention of dental caries formation [9]. It stimulates osteoblastic and alkaline phosphatase activities in terms of cell proliferation and differentiation [10,11]. According to the literature [12], these properties are enhanced when the polycrystalline solids are of nanometric size with grains of less than 100 nm diameter. The unique properties of these materials arise from their high surface-to-volume ratio and large number of atoms residing near their grain boundaries [13].
Mechanochemical synthesis is a simple method for preparation of nanostructured materials in both experimental and commercial quantities [14]. Although diverse techniques can be used to produce FA powder [15–21], mechanochemical synthesis seems to be a more reliable and effective method [22–24]. The intensive mechanical collisions that take place during the high-energy ball milling of the constituent materials result in initiation of solid-state reactions which end up with FA formation. Considering that the purity of the final products and the efficiency of the utilised synthesis processes depend highly on the formation reactions, recently many investigations have concentrated on the FA formation mechanism [23,25,26]. To find out the reaction pathways and the intermediate species that participate in the overall formation reaction, comprehensive understanding of the details of the governing steps is required.

We aimed to find the intermediate steps which lead to the formation of the nanocrystalline Ca\(_{10}\)(PO\(_4\))\(_6\)F\(_2\) by the mechanochemical method. While most FA is produced using calcium carbonate (CaCO\(_3\)) or calcium hydroxide [Ca(OH)\(_2\)] as a source of calcium [23,25,26], in this research the formation mechanism and intermediate compounds were studied using calcium oxide (CaO), calcium fluoride (CaF\(_2\)) and phosphorus oxide (P\(_2\)O\(_5\)) as the starting materials. For monitoring the progress of the reactions, we used X-ray diffraction (XRD) analysis to characterise the intermediate compounds. In order to determine the reactivity of the reactants and the sequences of formation of the intermediate compounds, we investigated three binary and four ternary milling routes ending up with the FA nanostructure. The data obtained were more detailed than information given by previous authors [23–27] and could assist us to propose a more comprehensive explanation for the FA formation process.

2. MATERIALS AND METHODS

We used CaO (BDH, catalogue no. 11021-462, min. 95% purity), P\(_2\)O\(_5\) (BDH, catalogue no. 21411, min. 98.5% purity) and CaF\(_2\) (MERCK, product no. 102840, precipitated pure with mean particle size of about 100 μm) as the source of calcium, phosphorus, fluoride and oxygen with a CaO:P\(_2\)O\(_5\):CaF\(_2\) molar ratio of 9:3:1 based on the stoichiometric ratio of the following reaction to prepare FA powder

\[
9\text{CaO(s)} + 3\text{P}_2\text{O}_5(s) + \text{CaF}_2(s) \rightarrow \text{Ca}_{10}(\text{PO}_4)_6\text{F}_2(s) \tag{1}
\]

where 's' represents the solid state.

We charged the mixture into a stainless steel vial containing stainless steel balls of 1 cm diameter. The ball-to-precursor weight ratio was 40:1. The milling rotational speed was 260 rpm in accordance with a pre-specified schedule. We performed two sets of milling regimes to define the formation mechanism of FA powder. First, we milled three binary CaO–CaF\(_2\), P\(_2\)O\(_5\)–CaF\(_2\) and CaO–P\(_2\)O\(_5\) mixtures. These were labelled CF\(_y\), PF\(_y\) and CP\(_y\), where \(y\) represented the milling time.

In three of the four ternary milling sets, first, two precursors were mechanically activated for 3 h to accelerate the final reaction. Then, the remaining third reactant was added to the system followed by a milling step of up to 48 h. The resulting powders were labelled as CF3Py, PF3Cy and CP3Fy where \(y\) represented the milling time. The fourth ternary system consisted of all three reactants which were charged into the vial and milled for different times up to 48 h. The product of this process was named CPFy. The detailed sequences are illustrated in Figure 1.
XRD spectra of the samples were obtained on a Philips Analytical X-Ray B.V. diffractometer using Ni-filtered Cu Kα radiation from 2θ = 10 to 60° with a step size of 0.02°, a generating voltage of 40 kV and an electric current of 40 mA. JCPDS standard cards; No: # 02-1088 for CaO, # 35-0816 for CaF₂, # 85-1120 for P₂O₅, # 81-2040 for Ca(OH)₂, # 85-0846 for CaCO₃, # 83-0688 for phosphoric acid (H₃PO₄), # 03-0604 for calcium phosphate (Ca₂P₂O₇) and # 15-0876 for FA were used to define the phase characterisation of the prepared samples. The average crystallite sizes of the products were estimated from peak broadening of the XRD patterns based on the Williamson–Hall (W–H) formula.

\[\beta \cos(\theta) = 0.9 \lambda / d + 4 \varepsilon \sin(\theta) \] \hspace{1cm} (2)

where \(d \) is the average crystallite size (nm), \(\lambda \) is the X-ray wavelength (\(\lambda = 0.1540 \) nm for Cu Kα radiation), \(\beta \) is the broadening of the diffraction peak measured at half peak intensity (in radians), \(\theta \) is the Bragg diffraction angle (°) and \(\varepsilon \) is the lattice strain. The full-width at half-maximum (FWHM) of the 002, 213 and 222 reflections (which were sharper and isolated from the others) were taken to measure the crystallite sizes of the FA powder.

The \(a \) and \(c \) apatite lattice parameters were measured with the XRD data of the (002) and the (222) planes and using the standard formula for the hexagonal close packed system according to Eqn (3) [29]

\[d = \left[\frac{4}{3a^2} (h^2 + hk + k^2) + (l^2/c^2) \right]^{-1/2} \] \hspace{1cm} (3)

where \(d \) is the spacing between the adjacent planes in the Miller indices set (hkl).

Atomic absorption spectroscopy (AAS, GBC, Avanta) of the samples gave the iron concentration of the synthetic powders due to the vial wear during the milling operation. FTIR spectroscopy was performed using an ABB Bomen model MB 100 instrument to collect the spectral data of the samples in the spectral range 400–4000 cm⁻¹ with resolution of 4 cm⁻¹ by using the KBr pellet technique.

A transmission electron microscope (TEM, LEO 912 AB, Germany) operating at an accelerating voltage of 120 kV was employed to observe the morphology and the particle size of the FA products.
powder. Morphological investigations were also conducted by field emission scanning electron microscopy (FESEM, Hitachi, S-4160, Japan) of the samples at an acceleration voltage of 15 kV.

3. RESULTS AND DISCUSSION

3.1 X-ray diffraction evaluations

Figure 2(a) plots the XRD patterns of the CPy powder mixture for y = 0.5, 1, 2, 3 and 6 h. As is seen in the figure, after 0.5 h milling, sharp peaks corresponding to Ca(OH)$_2$, Ca$_2$P$_2$O$_7$ and H$_3$PO$_4$ are present in the mixture. This indicates that due to their high hydrophilicity, P$_2$O$_5$ and CaO absorb ambient moisture and form H$_3$PO$_4$ and Ca(OH)$_2$ at the early stages of the milling operation through Eqns (4) and (5) respectively.

During the first 30 min of the milling process, Ca$_2$P$_2$O$_7$ was formed by a reaction between Ca(OH)$_2$ and H$_3$PO$_4$ [Eqn (6)], which shows the high reactivity of these two compounds. After 1 h of milling, the peaks associated with Ca(OH)$_2$ and H$_3$PO$_4$ completely vanished and the only remaining compound was Ca$_2$P$_2$O$_7$. In the case of CF3, due to the prolonged milling time, the grain size decreased and the volume-fraction of the grain-boundaries increased and eventually the powder mixture mainly consisted of amorphous phases.

\[
P_2O_5 + 3H_2O \rightarrow 2H_3PO_4 \quad \Delta G_{298K} = -174.19 \text{ kJ mol}^{-1} \quad \Delta H_{298K} = -181.23 \text{ kJ mol}^{-1} \quad (4)
\]

\[
CaO + H_2O \rightarrow Ca(OH)_2 \quad \Delta G_{298K} = -57.69 \text{ kJ mol}^{-1} \quad \Delta H_{298K} = -64.37 \text{ kJ mol}^{-1} \quad (5)
\]

\[
2H_3PO_4 + 2Ca(OH)_2 \rightarrow Ca_2P_2O_7 + 5H_2O \quad \Delta G_{298K} = -297.83 \text{ kJ mol}^{-1} \quad \Delta H_{298K} = -288.69 \text{ kJ mol}^{-1} \quad (6)
\]

The XRD patterns of the CFy powder mixtures milled for y = 3, 6 and 12 h are shown in Figure 2(b). In the pattern of CF3, in addition to the peaks attributed to CaF$_2$, sharp peaks of Ca(OH)$_2$ were also detected which showed the early transformation of CaO into Ca(OH)$_2$. The XRD patterns also reveal the presence of crystalline CaCO$_3$ in the powder mixture even after 12 h of milling. Based on the JCPDS standard card, the first peak of CaCO$_3$ at $2\theta = 29^\circ$ presents in the CF3 XRD pattern. The second and third peaks, which are relatively weak, could overlap with CaF$_2$ and Ca(OH)$_2$ peaks at $2\theta = 47^\circ$. Although the milling process is done in a sealed vial, it seems that the mechanically-activated CaO becomes reactive to capture CO$_2$ during the milling process. Considering that the purity of the starting CaO and CaF$_2$ is high, this impurity comes from the ambient atmosphere. While the initial powder mixture contains CaO with a ratio of 3:1 over P$_2$O$_5$, the unreacted CaO could be transformed to CaCO$_3$ under the CO$_2$-containing atmosphere by the following equation

\[
CaO + CO_2 \rightarrow CaCO_3 \quad \Delta G_{298K} = -130.92 \text{ kJ mol}^{-1} \quad \Delta H_{298K} = -178.28 \text{ kJ mol}^{-1} \quad (7)
\]

On increasing the milling time to 12 h, no noticeable changes occurred in the XRD pattern, except some broadening and decreasing in the intensity of the CaCO$_3$ peak. This implies that the powder particle size became smaller without formation of a new phase. No reaction occurred between CaO and CaF$_2$ during this 12 h of milling.

XRD patterns of the PFy powder mixtures milled for y = 0.5, 1, 2, 3 and 6 h are indicated in Figure 2(c). In the PF0.5 spectrum, characteristic peaks of both CaF$_2$ and P$_2$O$_5$ are clearly observable. Despite the high hydrophilicity of P$_2$O$_5$, H$_3$PO$_4$ is not present in this sample which could be due to the low level of humidity of the ambient air during the experiment. When the mechanical activation time was extended to 2 h, all peaks corresponding to P$_2$O$_5$ vanished,
Fluorapatite formation from CaO, CaF₂ and P₂O₅ precursors

but CaF₂ peaks were still visible. After milling for 6 h, no crystalline phases forming due to a reaction between CaF₂ and P₂O₅ were detected.

In these binary systems, while after 3 h no crystalline phases present in the CP system, for PF a fully amorphous pattern is observed after 6 h of milling; however, in the CF system, even after 12 h of milling clear signs of crystalline CaF₂ and Ca(OH)₂ were found in the XRD pattern.

Figure 3(a) shows the XRD patterns of the CP₃Fₙ powder mixture milled for n = 3, 6, 12, 24 and 48 h. In the case of the CP₃F₃ powder, sharp CaF₂ peaks are observable, while no traces of CaO or P₂O₅ are detected. This agrees well with the XRD pattern of the CP₃ system which is shown in Figure 2(a) where any peaks corresponding to CaO and P₂O₅ phases vanish after 3 h milling. The broad weak peaks appearing at 2θ = 25.95 and 32.14° indicate the formation of the apatite phase after 24 h milling. However, the presence of CaF₂ peaks in these patterns indicates that the formation process is not yet complete. As the milling time exceeds 24 h, further increase in the crystalline order of the apatite phase and further sharpening of the principal diffraction peaks occur. Since the XRD pattern of the CP₃F₄₈ is in good agreement with that of the standard FA crystals and no other phases are detectable after 48 h milling, it is concluded that almost the entire amount of the initial powder mixtures react to form the relatively well-crystalline FA sample using this milling route.

Plots of the XRD spectra of the CFₙPy powder mixtures milled for n = 3, 6, 12, 28 and 48 h are shown in Figure 3(b). While no peaks of CaO and P₂O₅ are seen in these patterns, Ca₂P₂O₇ peaks appear after 3 h milling. Sharp characteristic peaks of CaF₂ are detectable in the 3, 6, 12 and 24 h milled samples. After 24 h of milling, the characteristic peaks of CaF₂ are weakened and broadened while those peaks corresponding to the poorly crystalline FA gradually form. After milling for 48 h, the XRD pattern of the prepared FA becomes strong and sharp. This confirms the formation of the relatively well-crystalline FA phase.

Figure 3(c) shows the XRD pattern of the PFₙCy mixture milled for n = 3, 6, 12 and 48 h. By adding CaO to the PF₃ powder mixture and milling for 3 h, in the case where no moisture absorption occurs CaO reacts with P₂O₅ to form Ca₂P₂O₇. After milling for 12 h, while CaF₂ peaks are still visible in the XRD pattern, the appearance of some new peaks implies the formation of a poorly crystalline apatite phase. With increase of the milling time up to 48 h, an increase in the XRD intensity of the apatite peaks indicates formation of well-crystalline FA.

The XRD patterns of the CPₙFₙy mixture milled for n = 3, 6, 12 and 48 h are shown in Figure 3(d). After milling for 3, 6 and 12 h, the only crystalline phase is CaF₂. The CPF₁₂ sample indicates the presence of a few broad peaks around 2θ = 31.75 and 25.83° which seems to be...
the fingerprint of the apatite phase. The broad envelope-shaped peaks reveal that the newly formed apatite is poorly crystalline. As the milling time reaches 48 h, the only detectable peaks correspond to FA. This reveals the progression of the well-crystalline FA formation. While formation of FA appears in the CF3Py system only after 24 h of milling, in the other three systems clear signs of crystalline FA are observed after 12 h of milling. However, after 48 h of milling, CF3P48 shows the highest peak intensity and sharpness which implies the strong crystallinity of this product. This could be due to the relatively longer milling process on CaF₂-containing samples which mechanically activates CaF₂ to react with the other compounds to make a well-crystalline FA powder. PF3C48 also shows higher peak intensities than CP3F48 and CPF48 which confirms the role of CaF₂ mechanical activation on the peak intensities of the FA powder.

Table 1 summarises the lattice parameters of the produced powders which demonstrates that the obtained synthetic FA samples have essentially the same lattice parameters as those based on the JCPDS standard file.

From the XRD observations, it is suggested that the synthesis of FA using CaO, CaF₂ and P₂O₅ proceeds in several stages by forming intermediate products. Detection of the intermediate Ca(OH)₂, H₃PO₄, Ca₃P₂O₇ and CaCO₃ compounds by the XRD patterns confirms the validity.

Figure 3 XRD diffractograms of the mechanochemically treated mixtures of (a) CP3Fy, (b) CF3Py, (c) PF3Cy and (d) CPFy ternary systems, where numbers refer to milling time in h.
Fluorapatite formation from CaO, CaF2 and P2O5 precursors

of the sequential formation mechanism. While the above-mentioned phases were formed during the early stages of milling, CaF2 was the last precursor to participate in the formation reaction. It seems that this phase did not directly react with either CaO or P2O5. Formation of fully crystalline Ca10(PO4)6F2 eventually occurs due to the reaction between Ca2P2O7, CaF2 and CaCO3 after 48 h of milling as shown in Eqn (8).

$$3\text{Ca}_2\text{P}_2\text{O}_7 + 3\text{CaCO}_3 + \text{CaF}_2 \rightarrow \text{Ca}_{10}(\text{PO}_4)_6\text{F}_2 + 3\text{CO}_2 (g)$$ (8)

$$\Delta G_{298K}^\circ = -143.93 \text{ kJ mol}^{-1} \quad \Delta H_{298K}^\circ = +96.89 \text{ kJ mol}^{-1}$$

During the milling process, CO2 gas may be released to the atmosphere. However, the FTIR analysis reveals a slight fingerprint of CO32– group substitution in the PO43– sites of the apatite lattice, which is discussed in Section 3.2.

In this research, no trace of any other calcium phosphate phases, e.g. CaHPO4 and Ca3(PO4)2 was detected in the XRD patterns of the mechanochemically-treated mixtures. This indicates that the amount of impurities in the produced apatite is negligible. AAS analysis shows that the iron concentration of the final powder (sample CF3P48) is 0.51 wt%, which is less than the detection limit of the XRD measurement. This confirms the capability of the mechanochemical route to produce relatively pure FA powder.

3.2 FTIR analysis

Figure 4 presents the FTIR spectrum of the FA nanocrystals prepared after 48 h of milling of the CF3P48. The peak at 471 cm$^{-1}$ corresponds to the asymmetrical ν_2 stretching vibration of PO4$^{3–}$ [23,24]. The ν_4 bending vibration of this group appears as two peaks at 568 and 599 cm$^{-1}$ [22,30]. The band at 743 cm$^{-1}$ is due to the increase of F$^-$ content in the (OH$^–$, F$^–$) chain of apatite. When almost pure FA is obtained, OH···F is predominant in the F$^–$ rich chains containing only a few OH$^–$ groups [31]. The ν_1 bending vibration of the phosphate group appears at 964 cm$^{-1}$ [22] and the most intense bands in the spectrum relating to the asymmetrical ν_3 stretching vibration of the phosphate group appear at 1050 and 1093 cm$^{-1}$ [22,23].

The band at 874 cm$^{-1}$ and a weak band at 1460 cm$^{-1}$ correspond to the ν_2 and ν_3 stretching vibrations of the carbonate groups which shows substitution of CO3$^{2–}$ groups in PO4$^{3–}$ sites of the apatite lattice (B-type substitution). Since carbonate groups are a part of hard tissue structures, this low content of CO3$^{2–}$ groups could improve the bioactivity of FA and makes it more similar to biological components [32,33]. The sharp band at 1645 cm$^{-1}$ and the broad band over 3800–2500 cm$^{-1}$ are attributed to the vibrations of the hydroxyl group originating from the absorbed water in the sample and/or in the KBr pellet [23,24].

3.3 Microscopic analysis

The FESEM micrographs in Figure 5 show the particle size distribution and morphology of the FA powder prepared through mechanochemical synthesis by the CF3P48 route. It can be

www.prkm.co.uk
noted that the nanoscale particles tend to make agglomerates with irregular shapes and wide size distribution. Higher magnification shows the surface of the agglomerates which are made up of small particles. TEM micrographs of the FA particles (CF3P48) in Figure 6 show that the agglomerates consist of nano-sized semicircular crystals with an average size of 20–40 nm which is in good agreement with the average crystallite size (~34 nm) determined by the W–H formula.

Figure 4 FTIR spectrum of the resulting FA nanocrystals.

Figure 5 FESEM micrographs of FA particle morphologies.

Figure 6 TEM images of FA particle morphologies.
4. CONCLUSIONS

In this study, we have investigated the synthesis and characterisation of FA powder from the starting materials of CaO, CaF₂ and P₂O₅ through a mechanochemical route. The formation mechanism of FA powder was monitored using XRD and FTIR analysis. The results obtained are summarised as follows:

1. XRD and FTIR analyses showed that a set of solid state reactions ended up with the formation of well-crystalline FA when the precursors were milled together.

2. The FA formation comprises several intermediate stages. In a humid atmosphere, P₂O₅ absorbed water to form H₃PO₄ and CaO converted to Ca(OH)₂. CaCO₃ was formed when CaO captured CO₂ of the ambient atmosphere. Reaction of H₃PO₄ and Ca(OH)₂ led to the formation of Ca₂P₂O₇. CaF₂ was the last precursor which reacted with Ca₂P₂O₇ and CaCO₃ to eventually form crystalline FA powder after 48 h of milling. Since no reaction directly occurred between CaF₂ and CaO or P₂O₅, a pre-milling step of CaF₂ could help to get a well-crystalline FA powder.

3. The broadness of the XRD peaks of the final FA indicated that the size of the produced powder was in the nanometre scale which was confirmed by both the TEM examination and the crystallite size measurement of the FA particles using the W–H formula (~34 nm).

4. The final product had a spherical shape with a tendency to form agglomerates during the milling process.

5. ACKNOWLEDGEMENTS

We thank Sharif University of Technology, the Iran National Science Foundation and the Iran Nanotechnology Initiative Council for their support of our research activities.

Published online: 10 October 2018

6. REFERENCES

www.prkm.co.uk